Friday, January 18, 2013

Q: What's the Difference Between a "Gravitational Wave" and a "Gravity Wave"?

The things that LIGO looks for are called gravitational waves (which are discussed in depth here on my blog and on the LIGO website).  That can be a mouthful, especially when having a conversation about them.  People, including us professionals, realize this and often take the shortcut of calling them "gravity waves".  It sounds so similar that this must mean the same thing, right?  Well, no!


GRAVITY WAVES ARE NOT GRAVITATIONAL WAVES

The proper technical use of gravity wave refers to waves on the interface of two fluids, which can be liquid and/or gas.  Where this boundary is disturbed, gravity will pull it down and buoyancy will push it up.  This combination of opposite push and pull creates a wave that moves out over the surface.  You can make your own interface of two fluids by filling a glass with some water and oil:

A glass containing oil and water.  Oil settles at the top because it is less dense (more buoyant).  [Source: Wikipedia]

Water and oil will separate if left alone.  This separation creates a boundary between the oil and water with the oil on top since it is less dense.  Now imagine gently tapping on the side of the glass.  The vibration from your tap will transfer into the separated oil and water which will produce a gravity wave on their boundary.  If you actually do this carefully enough, you can produce a gravity wave ONLY on the oil/water boundary and not on the surface of the oil (though a surface wave on the oil is technically a gravity wave too since that is a liquid/gas fluid boundary).

While the oil and water example technically illustrates a gravity wave, the term is usually applied to gravity waves that occur in nature.  Examples include:

  • The waves on water caused by wind from large ocean waves to ripples in a puddle; these are examples of gravity waves on an gas/liquid boundary.  
  • Waves of different density waters under the oceans' surface (like warm/cool water, or fresh/salt water); these are examples of a liquid/liquid boundary.
  • The rippling of clouds, like in the movie below; this is an example of a gravity wave on a gas/gas boundary.




CAN A GRAVITATIONAL WAVE DETECTOR DETECT GRAVITY WAVES TOO?

We've now established that a gravity wave is very different from the gravitational waves that LIGO is looking for.  But can LIGO detect them anyway?  Indirectly, yes!  Almost three-quarters of the Earth is covered by oceans.  These oceans are roiling with gravity waves both within the water and on top of it.  When these waves encounter solid earth, much of the wave is reflected but some of the energy is absorbed.  This absorbed energy can then create surface waves on the remaining part of the Earth's surface that is solid.  These ground vibrations are called microseism.

Since LIGO lives on the Earth's surface (many people think that LIGO is underground but it really is built above ground), these vibrations shake the detector and contribute to the measured detector noise.  So much so that, compared to the gravitational waves we seek, we don't expect to be able to detect low frequency (less than about 10 Hz or so) gravitational waves.  And it doesn't matter that both LIGO detectors are near shores since the microseism shakes the entire Earth - we could have built LIGO in the middle of Nebraska and the microseism would still negatively affect us. 

In order to detect low frequency gravitational waves, we need to get away from the microseism.  The proposed gravitational wave detector that can do this is the space-based eLISA satellites.  (I've also discussed eLISA and associated drama on this blog previously.)  eLISA would be exclusively sensitive to low frequency gravitational wave and would compliment LIGO well: there are many young systems producing low frequency gravitational waves all the time while there are few producing the high frequency death throes that LIGO can detect.  Together, LIGO and eLISA will provide a more complete gravitational-wave picture of the life cycle of some of the most energetic, violent objects in the Universe.


CONCLUSION

"Gravitational waves" and "gravity waves" are very different entities.  However, you may hear us refer to a gravitational wave as a "gravity wave".  This is a personal pet peeve of mine (can't you tell?).  While I work hard to use the term "gravitational wave" correctly, I am often hesitant to say anything to colleagues I hear using "gravity wave" instead.  Watch the NSF documentary Einstein's Messengers (also on the "Viewing Fun" page on this blog) and you will see some highly respected LIGO scientists refer to "gravity waves"; it makes me cringe a little every time but I'm not one to gainsay my betters.  Now that you've read this, you'll know what we really mean ;)


Read more:

Thursday, January 10, 2013

SNEWS and LIGO: Neutrinos Tell of Possible Gravitational Wave

When I start off a tour at the LIGO Observatory, I usually start by talking about how gravitational waves will open a new window to view the Universe.  I've done this so many times that I have the talking point pretty much memorized:
"Up until recently, we've only been able to observe the Universe using light and its different forms.  Visible light, X-rays, and microwaves are just a few different kinds of light and every time we have looked at the Universe in a new way, we discovered something unexpected that revolutionized our understanding of the Universe.

Well, light has the inconvenient property of being fairly easily absorbed or reflected away from its path.  However, the Universe is transparent to gravitational waves; meaning that they can go through matter and come out the other side unchanged.  There is no such thing as a gravitational-wave shadow!"
Note that I start by saying that until recently all of astronomy has used light as its tool.  This is because there is another medium that has been used: neutrinos.  I've talked a bit about neutrinos previously here, namely when I discussed the debunking of the "faster-than-light neutrino" claim last year and how neutrinos are used in multi-messenger astronomy.  Quoting the important part from the multi-messenger astronomy post:
"Today, we can do astronomy with means other than light.  For example, neutrinos.  These are subatomic particles that have no electric charge, have nearly no mass, travel very near the speed of light and are able to pass through matter almost undisturbed.  However, these properties add up to make it very hard to detect neutrinos (did you know that there are billions of neutrinos from the Sun passing through your body every second?!).  Neutrinos are also emitted when a star dies in an explosion called a supernova.  That means we may observe the optical burst of light AND the neutrinos from a single supernova.  Any time that you can observe the same event in multiple ways, you almost always learn more than if you only observed it one way."
- 14 October 2010
What I didn't go into is that LIGO is working to detect gravitational waves from a supernova as well.  While we can do this without complementary detections from traditional and neutrino observatories, having that information from them will make it easier for us to find the signal buried under the detector noise that dominates what LIGO records.  This is done through the Supernova Early Warning System (SNEWS).


SNEWS

Yes, this is pronounced just like you pronounce "snooze".  A SNEWS alert is sent out shortly after neutrinos from a supernova (as opposed to neutrinos from the Sun) are detected.  Since neutrinos and travel through matter with very little disturbance just like gravitational waves, that means that if we saw neutrinos, there is also a good chance that we may see the gravitational waves from that event.  Even more compelling for us in the gravitational wave community is that SNEWS only really expects to see neutrinos from a supernova if it came from within the Milky Way galaxy (or the Magellanic Clouds that are two small galaxies that orbit the Milky Way).  As far as gravitational waves are concerned, that is in our own backyard so any accompanying gravitational waves would likely be large enough for us to detect!   (When searching for gravitational waves in general, we expect that almost all of our sources will come from galaxies outside of the Milky Way.)


EARLY WARNING SYSTEM?

The reason that the detection of neutrinos is considered an "early warning system" for a supernova is that the processes that produce these neutrinos happen hours to days before the optical explosion that traditional observatories would be able to see.  The supernova explosion occurs after the mass of the star collapses in on itself; this is called a core collapse.  Neutrinos are normally produced by the nuclear fusions inside the star (our Sun produces MANY all the time), but during the core collapse many more are produced (it is estimated that over 90% of the energy in the collapse is expended as neutrinos).  It is also during the core collapse, when so much of the star's mass is in motion, that gravitational waves are produced.  If there is a SNEWS alert, that means that there is a higher probability of a gravitational wave detection at that time.


WHAT HAPPENS AT LIGO DURING A SNEWS ALERT?

First off, let me say that there has not been a SNEWS alert yet since these supernovae in our galaxy are rare (they happen about every 50 years or so that we are aware of).  But if a SNEWS alert comes through while LIGO is looking for gravitational waves, the protocol is quite simple: don't do anything that would cause the quality of the data to be degraded.  More specifically, don't create vibrations.  Don't walk close to the detector (your footsteps appear to be little earthquakes to the detector), don't leave the site in an automobile (any acceleration by that a car or larger vehicle will create a little wave in the ground that will affect the detector).  This has brought up the question of what to do with the FedEx guy if he is on site making a delivery...  While we cannot hold anyone against their will, I am sure that he would be asked to stick around for a while. 

This may sound a little harsh, but considering the rarity of these events and what is to be gained, sitting around isn't all that bad!


WHAT IS TO BE GAINED?

First, to the traditional astronomy community (telescopes detecting light), it is exceedingly rare to see a supernova from its beginning and doing so can tell astronomers more about what kind of supernova it is (see this Wikipedia page for more information about the different types of supernovae).

Also, if the gravitational waves from the core collapse of a star were to be detected, this will allow us to "see" what went on inside the star - something that can never be done with traditional astronomy.  Knowing what goes on inside the star will allow us to use the dying star as a nuclear reactor unlike any we could ever create on Earth.  This may be able to tell us more about nuclear physics which could have implications for technology in the future (I have no idea what those may be).


NEUTRINOS AND SUPERNOVA IN THE PAST

So far, there are only two detected sources of neutrinos other than those produced by nuclear reactions on Earth: those from the Sun and those from the supernova known as SN 1987A.

NASA image of 1987A supernova remnant near the center.  Inset: a close up of the supernova  [Source: Wikipedia]

SN 1987A happened on 23 February 1987 (hence the name) and was located in the (relatively) nearby Large Magellanic Cloud and could be seen from the Southern Hemisphere.  About 2-3 hours before the star exploded (as seen from Earth), neutrinos were detected at 3 different neutrino detectors.  This detection not only was the birth of neutrino astronomy, but also allowed for the early observation of the light from the supernova.

Also, this supernova is thought by some to be the instigator of the LIGO concept.  This was when Joseph Weber made his claims of the first detection of gravitational waves (which was debunked - but that is a discussion for another blog post).  Weber used a method of looking for gravitational waves called a resonant bar gravitational-wave detector (a.k.a. Weber Bar).  Even though there wasn't a gravitational-wave detection, his claims and SN 1987A made scientists begin to consider other way to look for gravitational waves and that the technology needed was within reach.  So, that February day in 1987 was also the birth of LIGO in a way!