Wednesday, November 4, 2015

How We Monitor Data Collection with Advanced LIGO

The first Advanced LIGO observing run (O1) started in mid-September and will end in mid-January.  Today I want to tell you about how we collect our data.  On the surface this is obvious: with computers and sensitive electronics.  But how do we keep the detector working so that we can collect data and how do we know that our data is good?

The LIGO Livingston control room on 3 November 2015 (during O1).


The most important step in collecting data is that the detector is working.  This is the primary job responsibility of the roughly 10 operators who work at the site.  There are 3 10-hour shifts a day, each one overlapping with the previous operator's shift by 2 hours so that the incoming operator can be brought up to speed on any issues that may be ongoing.  Since O1 will last into mid-January, that means that there will be at least the operator in the control room every night, weekend, and holiday - even during Thanksgiving dinner, Christmas morning, and New Years at midnight!

During their shift, they monitor various things like the power of the laser, local vibrations, and a multitude of other readings from all over the detector that tend to drift over time.  This work is mainly to prevent a fault in one of the systems that would interrupt data collection.  When everything is working the way it is supposed to, this part of their job can be boring - and we love boring days and nights. 

Excitement happens when we are no longer able to keep the light bouncing back and forth between the mirrors (we call this "breaking lock").  The operator's job now is to respond by discovering if the lock was lost due to an environmental issue we can't control (like an earthquake anywhere on the planet) or due to an detector issue.  If there is a malfunction in the detector, the operator identifies what subsystem caused the problem and then uses their training to fix it and get the detector up and running again.  Through my conversations with them, one of the harder parts of their job is identifying which part of the detector isn't working properly since there are so many subsystems that need to work all at the same time for us to be able to collect data.


During the Initial LIGO science runs, there were always 2 people in the control room: the operator and the "scimon" (short for science monitor).  The scimon's job was to ensure the quality of the data that was being collected and give feedback to the operator.  Scimons came from institutions across the country who would usually spend a week or two at the observatory before returning to their home.  This meant that there were a lot of people passing though the observatory (which isn't bad) and by the time they really got comfortable in their job it was time for them to go home (this isn't good). 

We are doing the science monitoring differently for Advanced LIGO: we have longer-term (several months) visiting scientists (LSC Fellows) working on site to monitor the data as it is collected and we have data quality scientists (we call them "DQ Shifters") who remotely monitor the properties of the data for a period of 3-4 days.


These scientists are on-site to monitor the data as it is collected and they also each have a project related to improving the instrument.  There is almost always a fellow on-site except for the earliest hours of the day (they are not as necessary as the operator and their instrument research is best done when other scientists are also around).  The fellows work with the operators to identify subsystems that may be causing issues and they work to resolve them.  Basically, these are the Advanced LIGO version of the scimon but with the benefit of having the visiting scientist being able to apply what they learn while on site.


The DQ shifter is a scientist who monitors the quality of the data that has already been taken (within about a day or so).  Sometimes, patterns only become evident after a significant amount of data has been collected.  Because this work is not expected to have immediate feedback to the operators and fellows, this work can be done remotely.  We have created automated web pages that have all the plots needed to look at how the different parts of the detector are working.  There are about 40 or so of us (including me) who have been trained on how to interpret all of the graphs that appear on these pages and what specific things we should be watching for.  We communicate with the fellows at the site we are monitoring on a daily basis so that they can use the feedback to improve the quality of the data.  When our shift is done (we usually cover 3-4 days in a shift), we document our findings, report to the data quality group who specializes in studying collected data, and we enter an entry in the detector log with a summary of our shift.

Summary pages used by DQ Shifters to evaluate the quality of data already taken.  These plots specifically show how the ground was moving in different frequency bands throughout the day on 2 November 2015.

Friday, July 31, 2015

First Science Data With Advanced LIGO is Near!

It has been a very exciting time for Advanced LIGO recently.  A few weeks ago we completed a test run of the instrument to identify any remaining bugs in the instrument or other stability issues.  The commissioners (instrumental scientists who work on making LIGO more sensitive) have been busy adjusting various settings in a multitude of subsystems to increase our sensitivity to gravitational waves.  We are continuously learning more about how all of these subsystems react to one another and to the environment.  And learning is never without its own pains.  Some bugs have been bigger than others. We've had to actually touch the new instrumentation - meaning we had to seal off the chamber the part was in, let the air back in (since almost all of the instrument is in a vacuum), fix it, close up the chamber, and pump the air back out.  This is rare but it has happened.  Once the instrument was performing well, that's when we decided to stop tinkering with it and use it like we would if we were looking for gravitational waves.  More subtle issues in stability and other bugs will make themselves apparent only after you use it the way it's meant to be used - all the time.

Installing one of Advanced LIGO's seismic isolation platforms at the Hanford observatory in 2013.


These test runs are called engineering runs.  We abbreviate them ER followed by the number of the run.  The last one was called ER8.  I've already talked about the first one (ER1) back when almost everything was being simulated since the installation of the instruments was just getting off the ground.  The purpose of those early engineering runs was to test out the ability of our data analysis systems to handle the large amount of data we will collect.  As parts of aLIGO were installed, we replaced the simulated data from that component with real data.  ER8 was our first test of all of the instrument without anything being simulated.  While the purpose of this data is to test the stability of the whole system and to find other small bugs, we are still running all of our data analysis methods over the collected data.  We don't expect to find a gravitational wave in this data, but if we have compelling reason to believe that we really did see something we will certainly pursue it as a real detection.  Don't get too excited, though, since there are no indications that we collected a gravitational wave.


What is really exciting is that we are preparing to make that first detection.  We don't really expect to detect a gravitational wave with our first science data (which will be called O1 - observation 1) with aLIGO but it is not as improbable as it was with Initial LIGO.  We are talking about what we learned from the blind injection in our last iLIGO data set (otherwise known as the "Big Dog" event) and what our detection validation should entail.  We are talking about writing the paper that we will publish announcing the first detection and its details.  We are even talking about how we will engage the public with this announcement.  Don't misunderstand me - we have not seen anything yet, but we are preparing ourselves for the possibility of detection.


You really don't have any idea how exciting this is especially for those of us who have been around a while (I have been working on LIGO since starting grad school in 1999 and I'm a youngster).  I have been working on this project that is so much bigger than myself since before we took our first data with Initial LIGO.  I remember when the collaboration was a couple hundred scientists (there are now almost 1000 of us).  I remember when we analyzed our first data and debated how to interpret our detection candidates when we almost sure that everything we had was noise (i.e. garbage).  Now we are talking about confidently making a detection, and doing astronomy with it.  This is the dawn of a new age in astronomy and I'm proud to be here to see it.

Distance in parsecs (1 pc = 3.26 light years) Initial LIGO was able to detect its standard source of 2 neutron stars orbiting each other just before they merge into one body.  (Read more here.)
aLIGO wil be able to "see" up to 200 Mpc (about 650 million light years).
Remember, we don't expect a detection, but it is possible.  To give you an idea of how possible, once we have aLIGO working at the sensitivity it was designed to work at, it will observe as much of the universe in several hours as Initial LIGO did in an entire year.  We won't be at design sensitivity for O1, but we can already detect our standard source 4 times farther away than we could on our best days with Initial LIGO.

An image of light that was filtered out of the laser before entering the LIGO detector.  Bend your neck to the right and you should be able to see a smiley face.  This is just a chance configuration and has no significance, but we thought it was cool.

Monday, June 1, 2015

Advanced LIGO is Here!

I've been away from all of you for a little over a year due to many factors including teaching new courses, starting new research projects, and more than a few personal reasons.  However, I wanted to let all of you know about the status of Advanced LIGO (spoiler: it's done) and that I will be back to posting on this blog on a regular basis.


On 20 October 2010, Initial LIGO (iLIGO) recorded its last bits of science data [read the blog post here].  At that time, we were taking some of the most sensitive gravitational wave data and we thought we may have recorded a real gravitational wave (it was a fake signal purposefully placed in the data to test our ability to find real gravitational waves, but we didn't know that at the time [you can read all about it here]).  The metaphorical "keys" to the detector were transferred from operations to the aLIGO installation team.

In the nearly 5 years since iLIGO, we've removed all of the old instrumentation, much of which had been designed 15 years ago (remember what cell phones looked like back then? - we've come a long way) and replaced it with newly redesigned instruments.  You won't notice anything different by flying over LIGO (there was not real estate expansion) but we gutted at very intricate and technical instrument and replaced it with more sophisticated hardware.  The details on the upgrades could make a whole series of blog posts, but a few of them included improved seismic (ground vibration) isolation, better ways to hang our mirrors like pendula, a more powerful laser, more massive mirror, better coatings on the mirrors, and new ways to reuse laser light to increase the laser power in the the arms.  All of this will combine to make aLIGO over 10 times as sensitive as it was before allowing us to observe 1000 times more of the universe than with the original observations we made.

The illustration above shows the anticipated "reach" of Advanced LIGO (the purple sphere) compared to Initial LIGO (the orange sphere).  Each small dot in the figure represents a galaxy.  Since the volume of space that the instrument can see grows as the cube of the distance, this means that the event rates will be more than 1,000 times greater.  Advanced LIGO will equal the 1-yr integrated observation time of Initial LIGO in roughly 3 hours. (Galaxy map credit: R. Powell,

On 19 May 2015, aLIGO was dedicated at the Hanford, WA observatory (since I am at the Livingston, LA site and generally unimportant, I missed out).  The "keys" are now back with the operations team at both sites (the Livingston site was scheduled to be 'done' before Hanford and has been 'working' for several months now).  Why did I put done and working in quote in my parenthetical comment?  Well, now is the time for commissioning.  The detector can turn on and operate as in interferometer but all of the new components aren't yet optimized to work together resulting in the detector being less sensitive than it was designed to be.  The work that is currently gong in with the detector is commissioning work that seeks to work on individual subsystems so that the detector works better as a whole.  In short, this is our version of tuning up our car.

Break time at the Advanced LIGO dedication at the LIGO Hanford Observatory on 19 May 2015.  [Source: LIGO Scientific Collaboration's Facebook page]

Even though neither detector is working at the sensitivity it was designed to, we are regularly setting sensitivity records when we do turn on the detector to test the commissioning work.  One of the ways we measure our sensitivity is to determine the farthest distance away a standard source of gravitational waves could be for us to just be able to detect it.  The standard source we use is two neutron stars orbiting each other and merging into one.  (We picked this because it is a simple system were we can predict how big the gravitational waves will be and what shape the waves will have.)  We call this the inspiral range.  Below is the insprial range for each aLIGO detector (Livingston is the blue squares line and Hanford is the red dots line) given the number of days since the aLIGO installation was declared complete (there are more data points for Livingston since we were scheduled to be done a little before Hanford).

The distance into the universe we would be able to detect a gravitational wave from our reference source of two neutron stars orbiting each other and merging into one.  [Source: Talk given by David Shoemaker at the aLIGO Dedication on 19 May 2015]

Our best data with iLIGO was able to detect out to about 20 Mpc (a little over 65 million light years away).  Currently, the Livingston's inspiral range is at 65 Mpc (212 million light years) and Hanford's is at 57 Mpc (almost 186 million light years).  So, even though we are still commissioning the detectors, we are already gathering the most sensitive gravitational-wave data ever!


Cristina Torres

I lost a very good friend a few moths ago.  Cristina and I were both postdocs at LIGO Livingston until 2012 when she took a position at the University of Texas at Brownsville as a professor.  We shared a passion for engaging others in our science, but she always had an openness to others that I have admired.  She was a better friend to me than I ever was to her, but if she was here to read this she would argue with me since she did exactly that in one of our last emails. 

The last time I saw her in person was when I was at UT Brownsville earlier this year to speak about work/life balance, which I don't really have figured out, at a regional Conference for Undergraduate Women in Physics (there is a beautiful tribute to her at the bottom of this page).  She was so stressed since much of the local organization and logistics was on her shoulders but the meeting went very well!  If I had any idea that I wouldn't be seeing her again, I would have made more of an effort to spend time with her (instead of just trying to stay out of her hair).

This is a picture of Cristina with a prototype of the new mirror suspension system at LIGO Livingston in 2012.  We use this display to show visitors some of the upgrades that they aren't able to see inside of aLIGO. 

Until again, Cristina...